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Abstract
Zurek’s derivation of the Born rule from envariance (environment-assisted
invariance) is retraced in an attempt to present a more detailed derivation,
which is extended to encompass the trace-rule form of the quantum probability
law in its full generality. The investigation begins by a review presentation of
Schmidt decomposition, and a detailed and complete theory of twin unitaries,
which are the other face of envariance, and which stand in close connection with
twin observables. The trace rule tr(Eρ), with E being an event (projector) and
ρ a quantum state (density operator), is derived in five stages. The first three
achieve the same as Zurek’s derivation of Born’s rule, but in a different way,
using the full power of twin unitaries. Stage 4 extends the Zurek-like derivation
to states (ray projectors) that are not eigenstates of the density operator. Finally,
stage 5 utilizes the assumption of continuity of the probability law in the density
operators to extend the trace rule to isolated (not correlated) systems.

PACS numbers: 03.65.Ta, 03.65.Ca

1. Introduction

Zurek has introduced [1] envariance (environment-assisted invariance) in the following way.
He imagined a system S entangled with a dynamically decoupled environment E, altogether
described by a bipartite state vector |ψ〉SE . Further, he imagined two opposite-subsystem
unitary operators uS and uE that ‘counter-transformed’ each other when elevated to the
composite system US ≡ (uS ⊗ 1E), UE ≡ (1S ⊗ uE), and applied to the bipartite state
vector, e.g.,

UEUS |ψ〉SE = |ψ〉SE . (1)

Zurek remarked that ‘When the transformed property of the system can be so
‘untransformed’ by acting only on the environment, it is not the property of S.’ Zurek,

1751-8113/07/225949+23$30.00 © 2007 IOP Publishing Ltd Printed in the UK 5949

http://dx.doi.org/10.1088/1751-8113/40/22/013
mailto:fedorh@infosky.net
mailto:fedorh@mi.sanu.ac.yu
http://stacks.iop.org/JPhysA/40/5949


5950 F Herbut

further, paraphrases Bohr’s famous dictum: ‘If the reader does not find envariance strange, he
has not understood it.’

The first aim of this study is to acquire a full understanding of envariance, or rather of its
other face, of twin unitaries. The wish to understand envariance as much as possible is not
motivated only by its strangeness, but also by the fact that Zurek makes use of it to derive one
of the basic laws of quantum mechanics: Born’s rule.

Zurek’s derivation gave rise to critical comments and inspired analogous attempts [2–5].
In a preliminary version of this study [6], quotations from each of these works and also from
Zurek’s most important paper on his derivation [7] were presented and commented upon from
the point of view of this author’s approach.

The second aim of this study is to utilize the full power of the complete theory of twin
unitaries to rederive (in a different way) Zurek’s result, and to go on to complete it to the full
quantum probability law.

I favour what I call the quantum-logical approach to the quantum probability law, which
is widely accepted since Gleason’s paper [8]: if E is an event or property (mathematically a
projector in the state space) of the system, and ρ is its state (mathematically a density operator),
then the probability of the former in the latter is tr(Eρ). (This form of the quantum probability
law is called the ‘trace rule’).

An equivalent, and perhaps more practical, form of the probability law is the following:
if |φ〉 is an arbitrary state vector of the system, then 〈φ|ρ|φ〉 is the probability that in a suitable
measurement on the system in the state ρ the event |φ〉〈φ| will occur. To follow Zurek’s
derivation as closely as possible, this form of the quantum probability law will be rederived,
and, for brevity, |φ〉 instead of the corresponding ray projector will be used throughout. A
proof of the equivalence of the just stated probability formula of this paper and the trace rule
is given below in relation (28).

All derivations of Born’s rule from envariance in the literature are restricted to eigenstates
(ρ|φ〉 = r|φ〉, r a positive number) of the density operator ρ describing the state of the
system. Four of the cited commentators of Zurek’s argument (I have failed to get in touch
with Fine) have pointed out to me that the restriction can be understood as natural in the
context of (previous) system–environment interaction, which has led to decoherence (cf [9],
section III.E.4), or if one takes the relative-state (or many-worlds) view, where the ‘observer’
is so entangled with the system in the measurement that the restriction covers the general case
(cf [10]).

In the next section a precise and detailed presentation is given of Schmidt decomposition
and of its special forms, canonical Schmidt decomposition and strong Schmidt decomposition.
In this last, most specific form, the antiunitary correlation operator Ua (introduced in previous
work [11]), the sole correlation entity inherent in a given bipartite state vector is made use of.
It is the entity that turns Schmidt decomposition into strong Schmidt decomposition, making
it complete and precise. This entity is lacking in almost all examples of the use of Schmidt
decomposition in the literature. (For an alternative approach to the correlation operator via
the antilinear operator representation of bipartite state vectors, see section 2 in [12].)

Twin unitaries, i.e., opposite-subsystem unitary operators that act equally on a given
bipartite state vector, which are hence equivalent to envariance, are analysed in detail, and the
group of all pairs of them is derived.

There is another derivation of the full set of envariance in the recent literature [13]. It is
algebraic, i.e., in terms of matrices and suitable numbers, whereas the approach of this study
is geometrical, i.e., it is in terms of state space decompositions and suitable maps.

In the next section also connection is established between twin unitaries and twin
Hermitians. The latter are the so-called twin observables, studied in detail in pure bipartite
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states in previous papers [11, 14]. Also a possibility of extending the notion of twin unitaries
to mixed bipartite states is shortly discussed. Extension to twin Hermitians in mixed states
was accomplished in previous work [15].

The next section actually consists of six subsections. Immediately before the first
subsection, the structure of the six subsections is explained.

In section 3 the quantum probability law is derived. During the derivation some points
come up that require more detailed discussion. In order to keep the derivation unbroken, these
discussions are presented in the subsections of section 4.

2. Mathematical interlude: Strong Schmidt decomposition and twin unitaries

If one has two opposite factor-space unitaries u1 and u2 that, on defining U1 ≡ (u1 ⊗ 12) and
U2 ≡ (11 ⊗ u2), act equally on a given composite state vector

U1|�〉12 = U2|�〉12, (2a)

then one speaks of twin unitaries (unitary twin operators) with respect to the bipartite state
vector. They give another, equivalent, view of envariance (see the introduction), since,
rewriting (2a) as

|�〉12 = U−1
1 U2|�〉12, (2b)

one can see that U−1
1 ‘untransforms’ the action of U2 (cf (1)) or symmetrically.

Incidentally, it is easy to see that U1|�〉12〈�|12U
−1
1 = U2|�〉12〈�|12U

−1
2 is equivalent to

U1|�〉12 = eiλU2|�〉12, (2c)

where λ ∈ R1. This does not diminish the usefulness of definition (2a), because, if (2c) is
valid for a pair (U1, U2), then one only has to replace these operators by (U1, eiλU2), and the
latter satisfy (2a).

Henceforth, we will write Us both for us, s = 1, 2, and for (11 ⊗u2) or (u1 ⊗ 12) (cf (1)).

Proposition. If two opposite-subsystem unitaries U1 and U2 are twin unitaries, then so are
U−1

1 and U−1
2 , as well as U

†
1 and U

†
2 , where the dagger denotes adjoining. Besides, also the

bra relation

〈�|12U1 = 〈�|12U2 (2d)

is valid.

Proof. Utilizing relation (2b) in the last step, one has

U−1
1 |�〉12 = (

U−1
2 U2

)
U−1

1 |�〉12 = U−1
2

(
U2U

−1
1

)|�〉12 = U−1
2 |�〉12.

The second claim follows from U−1
s = U

†
s , s = 1, 2. The final claim (2d) is the dual (or bra

relation) of the ket relation U
†
1 |�〉12 = U

†
2 |�〉12. �

It is the aim of this section to derive a complete theory of twin unitaries. To be precise,
by this is meant answering the following three questions:

(i) which unitaries Us, s = 1 or 2, have a twin?
(ii) if Us, s = 1 or 2, does have a twin, how to utilize the given bipartite state vector |�〉12 to

evaluate a twin?
(iii) is the twin unique?
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We begin by giving a partial answer to the first question.

Theorem 1 (A). If a subsystem unitary Us, s = 1 or 2, has a twin, then it necessarily commutes
with the corresponding reduced density operator:

[Us, ρs] = 0, s = 1 or 2, (3a, b)

where

ρs ≡ trt (|�〉12〈�|12), s, t = 1 or 2, s �= t, (3c, d)

and ‘trt ’ is the partial trace in the corresponding factor space. An (obvious) equivalent form
of the necessary condition is invariance of the reduced density operator under the unitary:

UsρsU
−1
s = ρs, s = 1 or 2. (3e, f )

Proof. Making use of (2d) in the next-to-last step, one has

U1ρ1 = U1tr2(|�〉12〈�|12) = tr2(U1|�〉12〈�|12) = tr2((U2|�〉12)〈�|12)

= tr2((|�〉12〈�|12)U2) = tr2(|�〉12〈�|12U1) = ρ1U1.

Symmetrically one derives the symmetrical relation for U2. �

In what follows it will be shown that (3a, b) or (3e, f ) give also a sufficient condition,
i.e., they give a complete answer to the first question. This will be done by answering also the
second question. We will take an arbitrary Us, s = 1 or 2, satisfying (3e, f ) with (3c, d), and
we will evaluate its twin. Finally, the third question will also be answered essentially in the
affirmative.

For the evaluation of the twin a correlation entity inherent in |�〉12 will be utilized.
To acquire this entity, a concise deviation is made in subsection 2.1. to give a review
(without proofs) of Schmidt decompositions. In particular, canonical Schmidt decomposition
is presented as a springboard for introducing the correlation entity in subsection 2.2.

In subsection 2.3. strong Schmidt decomposition, which involves the correlation entity,
as well as the so-called correlated subsystem picture, which gives an alternative view of |�〉12,

is presented. In subsection 2.4. the answer to question (i) is completed and questions (ii) and
(iii) are also answered. In subsection 2.5. connection is established between twin unitaries
and twin Hermitians. Finally, in subsection 2.6. twin unitaries in mixed bipartite states are
shortly discussed.

2.1. Review of Schmidt decompositions

We assume that a completely arbitrary bipartite state vector |�〉12 is given. It is an arbitrary
normalized vector in H1 ⊗ H2, where the factor spaces are finite- or infinite-dimensional
complex separable Hilbert spaces. The statements are, as a rule, asymmetric in the roles of
the two factor spaces. But, as is well known, for every general asymmetric statement, also its
symmetric one, obtained by exchanging the roles of 1 and 2, is valid.

We call an orthonormal complete basis simply ‘basis’.
The natural framework for Schmidt decomposition is general expansion in a factor-space

basis.
Let {|m〉1 : ∀m} be an arbitrary basis in H1. Then there exists a unique expansion

|�〉12 =
∑
m

|m〉1|m〉′2, (4a)
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where the generalized expansion coefficients {|m〉′2 : ∀m} are elements of the opposite factor
space H2, and they depend only on |�〉12 and the corresponding basis vectors |m〉1, and not
on the entire basis.

The generalized expansion coefficients are evaluated making use of the partial scalar
product:

∀m: |m〉′2 = 〈m|1|�〉12. (4b)

The partial scalar product is, in turn, evaluated expanding |�〉12 in arbitrary bases
{|k〉1 : ∀k} ⊂ H1, {|l〉2 : ∀l} ⊂ H2, and by utilizing the ordinary scalar products in the
composite and in the first factor spaces:

|�〉12 =
∑

k

∑
l

(〈k|1〈l|2|�〉12)|k〉1|l〉2. (4c)

Then (4b) reads

∀m: |m〉′2 =
∑

l

{∑
k

[(〈m|1|k〉1)(〈k|1〈l|2|�〉12)]

}
|l〉2, (4d)

and the lhs is independent of the choice of the bases in the factor spaces.
The proof is straightforward.
Now we define Schmidt decomposition. It is well known and much used in the literature.

It is only the first springboard for the main theory presented in subsection 2.4., for that of twin
unitaries.

If, besides the basis vectors |m〉1, the ‘expansion coefficients’ |m〉′2 are also orthogonal in
expansion (4a), then one speaks of a Schmidt decomposition. It is usually written in terms of
normalized second-factor-space vectors {|m〉2 : ∀m}:

|�〉12 =
∑
m

αm|m〉1|m〉2, (5)

where αm are complex numbers and ∀m : |m〉1 and |m〉2 are referred to as partners in a pair
of Schmidt states.

The term ‘Schmidt decomposition’ can be replaced by ‘Schmidt expansion’ or ‘Schmidt
form’. To be consistent and avoid confusion, we will stick to the first term throughout.

Expansion (4a) is Schmidt decomposition if and only if the first-factor-space basis
{|m〉1 : ∀m} is an eigenbasis of ρ1:

∀m: ρ1|m〉1 = rm|m〉1, 0 � rm. (6)

We will make much use of this basic property of Schmidt decomposition.
As is obvious in relation (5), the two subsystems play symmetric roles in Schmidt

decomposition. Hence, also the symmetric relation to the necessary and sufficient
condition (6) is valid.

Next we define a special form of Schmidt decomposition that is sometimes more useful.
It is called canonical Schmidt decomposition.

The non-trivial phase factors of the non-zero coefficients αm in (5) can be absorbed either
in the basis vectors in H1 or in those in H2 (or partly the former and partly the latter). If in
a Schmidt decomposition (5) all non-zero αm are non-negative real numbers, then we write,
instead of (5), the following decomposition

|�〉12 =
∑

i

r
1/2
i |i〉1|i〉2, (7a)
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and we confine the sum to non-zero terms (one is reminded of all this by the replacement of
the index m by i in this notation). Relation (7a) is called canonical Schmidt decomposition.
(The term ‘canonical’ reminds of the form of (7a), i.e., of ∀i : r

1/2
i > 0.)

Needless to say, every |�〉12 can be written as a canonical Schmidt decomposition.
Every canonical Schmidt decomposition (7a) is accompanied by the spectral forms of the

reduced density operators (cf (3c, d)):

ρs =
∑

i

ri |i〉s〈i|s , s = 1, 2. (7b, c)

(The same eigenvalues ri appear both in (7a) and in the two spectral forms (7b, c).)
One should note that the topologically closed ranges R̄(ρs), s = 1, 2 (subspaces) of the

reduced density operators ρs, s = 1, 2 are equally dimensional. The range-projectors are

Qs =
∑

i

|i〉s〈i|s , s = 1, 2. (7d, e)

The two reduced density operators have equal eigenvalues {ri : ∀i} (including equal possible
degeneracies).

One has a canonical Schmidt decomposition (7a) if and only if the decomposition is
bi-orthonormal and all expansion coefficients are positive.

The proof of these claims is straightforward. In the approach of this paper, (7a) is only
the second springboard for the final, most special, form of the Schmidt decomposition (9)
given below.

2.2. The antiunitary correlation operator

It is high time we introduced the sole entanglement entity inherent in any bipartite state
vector, which is lacking from both forms of Schmidt decomposition discussed so far. It is an
antiunitary map that takes the closed range R̄(ρ1) onto the symmetrical entity R̄(ρ2). (If the
ranges are finite-dimensional, they are ipso facto closed, i.e., they are subspaces.) The map is
called the correlation operator, and denoted by the symbol Ua [11, 14].

If a canonical Schmidt decomposition (7a) is given, then the two orthonormal bases of
equal power {|i〉1 : ∀i} and {|i〉2 : ∀i} define an antiunitary, i.e., antilinear and unitary operator
Ua, the correlation operator—the sole correlation entity inherent in the given state vector
|�〉12:

∀i : |i〉2 ≡ (Ua|i〉1)2. (8a)

The correlation operator Ua, mapping R̄(ρ1) onto R̄(ρ2), is well defined by (8a) and by
the additional requirements of antilinearity (complex conjugation of numbers, coefficients in a
linear combination) and by continuity (if the bases are infinite). (Both these requirements
follow from that of antiunitarity.) Preservation of every scalar product up to complex
conjugation, which, by definition, makes Ua antiunitary, is easily seen to follow from (8a) and
the requirements of antilinearity and continuity because Ua takes an orthonormal basis into
another orthonormal one.

Though canonical Schmidt decomposition (7a) is non-unique (even if ρs, s = 1, 2, are
non-degenerate in all their positive eigenvalues, there is the non-uniqueness of the phase
factors of |i〉1), the correlation operator Ua is uniquely implied by a given bipartite state vector
|�〉12.

This claim is proved in appendix A.
The uniqueness of Ua when |�〉12 is given is a slight compensation for the trouble one

has treating an antilinear operator. (Though the difficulty is more psychological than practical,
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because all that distinguishes an antiunitary operator from a unitary one is its antilinearity—it
complex-conjugates the numbers in any linear combination—and its property that it preserves
the absolute value, but complex-conjugates every scalar product.) The full compensation
comes from the usefulness of Ua .

Once the orthonormal bases {|i〉1 : ∀i} and {|i〉2 : ∀i} of a canonical Schmidt
decomposition (7a) are given, one can write

Ua =
∑

i

|i〉2K〈i|1, (8b)

where K is complex conjugation (denoted by an asterisk when numbers are concerned). This
means, by definition,

∀|φ〉1 : Ua|φ〉1 =
∑

i

(〈i|1|φ〉1)
∗|i〉2. (8c)

2.3. Strong Schmidt decomposition and the correlated subsystem picture

We finally introduce the most specific form of Schmidt decomposition.
If one rewrites (7a) in terms of the correlation operator by substituting (8a) in (7a), then

it takes the form

|�〉12 =
∑

i

r
1/2
i |i〉1(Ua|i〉1)2. (9)

This is called strong Schmidt decomposition.
If a strong Schmidt decomposition (9) is written down, then it can be viewed in two

opposite ways:
(i) as a given bipartite state vector |�〉12 defining its two inherent entities, the reduced

density operator ρ1 in spectral form (cf (7b)) and the correlation operator Ua (cf (8a)), both
relevant for the entanglement in the state vector;

(ii) as a given pair (ρ1, Ua) (Ua mapping antiunitarily R̄(ρ1) onto some equally
dimensional subspace of H2) defining a bipartite state vector |�〉12.

The second view of strong Schmidt decomposition allows a systematic generation and
classification of all state vectors in H1 ⊗ H2 (cf [16]).

One has

ρ2 = Uaρ1U
−1
a Q2, ρ1 = U−1

a ρ2UaQ1 (10a, b)

(cf (8a) and (7b, c)). Thus, the reduced density operators are, essentially, ‘images’ of each
other via the correlation operator. (The term ‘essentially’ points to the fact that the dimensions
of the null spaces are independent of each other.) Property (10a, b) is called twin operators.

When one takes into account the eigensubspaces R
(
Q

j
s

)
of ρs corresponding to (the

common) distinct positive eigenvalues rj of ρs, where Q
j
s projects onto the rj -eigensubspace,

s = 1, 2, then one obtains a geometrical view of the entanglement in a given state |�〉12 in
terms of the so-called correlated subsystem picture [11]:

R̄(ρs) =
⊕∑
j

R
(
Qj

s

)
, s = 1, 2, (10c, d)

where ‘ ⊕ ’ denotes an orthogonal sum of subspaces,

∀j : R
(
Q

j

2

) = UaR
(
Q

j

1

)
, R

(
Q

j

1

) = U−1
a R

(
Q

j

2

)
, (10e, f )

and, of course,

R̄(ρ2) = UaR̄(ρ1), R̄(ρ1) = U−1
a R̄(ρ2). (10g, h)
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In words, the correlation operator makes not only the ranges of the reduced density
operators ‘images’ of each other, but also all positive-eigenvalue eigensubspaces. In other
words, the correlation operator makes the eigendecompositions of the ranges ‘images’ of each
other.

One should note that all positive-eigenvalue eigensubspaces R
(
Q

j
s

)
are necessarily finite

dimensional because
∑

i ri = 1 (a consequence of the normalization of |�〉12), and hence no
positive-eigenvalue can have infinite degeneracy.

The correlated subsystem picture of a given bipartite state vector is very useful in
investigating remote influences (as a way to understand physically the entanglement in the
composite state) (see [12, 14]).

We will need the correlated subsystem picture of |�〉12 for the basic result of this section
given below: the final theorem on twin unitaries.

2.4. Completing the answers

We are now able to complete our study of twin unitaries.

Theorem 1 (B). Every subsystem unitary satisfying (3a) or (3b) with (3c) or (3d) has a twin.

Theorem 2. If a unitary U1 leaves ρ1 invariant (cf (3e) with (3c)), then

U2 ≡ UaU
−1
1 U−1

a Q2 + U ′
2Q

⊥
2 (11)

is its twin. (Here Q2 projects onto the range of ρ2, and U ′
2 in U ′

2Q
⊥
2 is an arbitrary second-

subsystem unitary commuting with Q2.)

Proof of theorems 1(B) and 2. Let U1 satisfy (3e). Then so does U−1
1 , and hence{

U−1
1 |i〉1 : ∀i

}
is an eigenbasis of ρ1 in its range just like {|i〉1 : ∀i}. Therefore, we can

write down a strong Schmidt decomposition as follows (cf (9)):

|�〉12 =
∑

i

r
1/2
i

(
U−1

1 |i〉1
)(

Ua

(
U−1

1 |i〉1
))

2.

Applying U1 to this, we obtain

U1|�〉12 =
∑

i

r
1/2
i |i〉1

(
UaU

−1
1 |i〉1

)
2. (12a)

On the other hand, application of U2 ≡ UaU
−1
1 U−1

a Q2 + U ′
2Q

⊥
2 to

|�〉12 =
∑

i

r
1/2
i |i〉1(Ua|i〉1)2

results in

U2|�〉12 =
∑

i

r
1/2
i |i〉1

((
UaU

−1
1 U−1

a

)
Ua|i〉1

)
2 =

∑
i

r
1/2
i |i〉1

(
UaU

−1
1 |i〉1

)
2. (12b)

The rhs of (12a) and that of (12b) are equal. �

Theorem 3. If U1 is a subsystem unitary that leaves ρ1 invariant (cf (3e)), then it has the
essentially unique twin unitary U2 ≡ UaU

−1
1 U−1

a Q2+U ′
2Q

⊥
2 , where U ′

2 satisfies [U ′
2,Q2] = 0,

and otherwise it is an arbitrary unitary.

Proof. Let (U1, U2) be twin unitaries. Applying them to the two strong Schmidt
decompositions, |�〉12 = ∑

i r
1/2
i

(
U−1

1 |i〉1
)(

Ua

(
U−1

1 |i〉1
))

2 = ∑
i r

1/2
i |i〉1

(
Ua|i〉1

)
2,

definition (2a) gives∑
i

r
1/2
i |i〉1

(
UaU

−1
1 |i〉1

)
2 =

∑
i

r
1/2
i |i〉1(U2Ua|i〉1)2.



Quantum probability law from environment-assisted invariance 5957

Since the second tensor factor in each term of canonical Schmidt decomposition is unique,
one has

∀i :
((

UaU
−1
1

)|i〉1
)

2 = ((U2Ua)|i〉1)2,

which can be rewritten as

U2 = UaU
−1
1 U−1

a Q2 + U ′
2Q

⊥
2 . �

It is straightforward to show (along the lines of the proof just presented) that the twin
unitaries are also responsible for the non-uniqueness of strong (or of canonical) Schmidt
decomposition. To put this more precisely, besides (9) (besides (7a)) all other strong Schmidt
decompositions (canonical Schmidt decompositions) are obtained by replacing {|i〉1 : ∀i}
in (9) by {U1|i〉1 : ∀i}, where [U1, ρ1] = 0 (by replacing {|i〉1|i〉2 : ∀i} in (7a) by{
(U1|i〉1)

(
U−1

2 |i〉2
)

: ∀i
}
, where [Us, ρs] = 0, s = 1, 2, and (11) is satisfied).

The set of all pairs of twin unitaries (U1, U2) is a group, if one defines the composition
law by (U ′

1, U
′
2) × (U1, U2) ≡ (U ′

1U1, U2U
′
2) (note the inverted order in H2). Taking the

inverse turns out to be (U1, U2)
−1 = (

U−1
1 , U−1

2

)
. The claim is proved in appendix B.

Having in mind the correlated subsystem picture (10a)–(10h) of |�〉12, it is immediately
seen that the three theorems on twin unitaries can be cast in the following equivalent unified
form.

The final theorem on twin unitaries. The group of all twin unitaries (U1, U2) consists of all
pairs of opposite factor-space unitaries

(i) that reduce in every positive-eigenvalue eigensubspace R
(
Q

j
s

)
, s = 1, 2 (cf (10c, d)), and

(ii) the reducees are connected by relation (11) and its symmetrical one mutatis mutandis, or,
to be more precise, in (11) and its symmetrical relation Qs is replaced by Q

j
s , s = 1, 2, and

the obtained system of relations enumerated by j are valid simultaneously for all j values.

In the more transparent language of formulae, the group consists of all pairs of unitaries
(U1, U2)

(i) that can be written in the form

Us =
∑

j

Uj
s Qj

s + U ′
sQ

⊥
s , s = 1, 2, (13a, b)

where ∀j : U
j
s is a unitary in R

(
Q

j
s

)
, and [U ′

s ,Qs] = 0, otherwise U ′
s is an arbitrary unitary,

s = 1, 2; and

(ii)

∀j : U
j

2 Q
j

2 = Ua

(
U

j

1

)−1
U−1

a Q
j

2, (13c)

U
j

1 Q
j

1 = U−1
a

(
U

j

2

)−1
UaQ

j

1. (13d)

Note that within each positive-eigenvalue eigensubspace R
(
Q

j
s

)
of ρs, s = 1, 2, all

unitaries U
j
s are encompassed (but not independently, cf (13c, d)). This will be important in

the application in the next section.
The next two (short) subsections round out the study of twin unitaries. The reader who is

primarily interested in the argument leading to the quantum probability law is advised to skip
them.
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2.5. Connection with twin Hermitians

There is a notion closely connected with twin unitaries in a pure bipartite state: it is that of
twin Hermitians (in that state). If a pair (H1,H2) of opposite factor-space Hermitian operators
commute with the corresponding reduced density operators, and

H2 = UaH1U
−1
a Q2 + H ′

2Q
⊥
2 , H1 = U−1

a H2UaQ1 + H ′
1Q

⊥
1 (14a, b)

is valid ([H ′
s ,Qs] = 0, otherwise H ′

s is an arbitrary Hermitian, s = 1, 2), then one speaks of
twin Hermitian operators. (Relations (14a, b), in analogy with (11) and its symmetrical one,
state that the reducees in the ranges of the reduced density operators are ‘Ua-images’ of each
other, and the reducees in the null spaces are completely arbitrary.)

One should note that twin unitaries and twin Hermitians are, actually, defined in the same
way. To see this, one has to replace U−1

s by U
†
s in (11) and in its symmetrical relation, and Hs

by H
†
s , s = 1, 2, in (14a, b).
Twin Hermitians have important physical meaning [12, 14]. But here we are only

concerned with their connection with twin unitaries.
If Us, s = 1 or s = 2, are symmetry operators of the corresponding reduced density

operators (cf (3e, f )), then there exist Hermitian operators Hs that also commute with the
latter and

Us = eiHs Qs + U ′
sQ

⊥
s , s = 1 or s = 2 (15a, b)

is valid. And vice versa, if Hs, s = 1 or s = 2 are Hermitians that commute with the
corresponding reduced density operators, then there exist analogous unitaries given by (15a, b).
(The unitary and Hermitian reducees in the ranges determine each other in (15a, b), and the
reducees in the null spaces are arbitrary.)

The latter claim is obvious. But to see that also the former is valid, one should take into
account that commutation with the corresponding reduced density operator implies reduction
in each (finite dimensional) eigensubspace R

(
Q

j
s

)
of ρs (cf (10c, d)). Then one can take the

spectral form of each reducee of Us , and (15a, b) becomes obvious (and the corresponding
reducees of Hs are unique if their eigenvalues are required to be, e.g., in the intervals [0, 2π).)

The connection (15a, b), which goes in both directions, can be extended to twin operators.
If (U1, U2) are twin unitaries, then (15a, b) (with ‘or’ replaced by ‘and’) determine

corresponding twin Hermitians, and vice versa, if (H1,H2) are twin Hermitians, then the same
relations determine corresponding twin unitaries.

2.6. Mixed states

If ρ12 is a mixed bipartite density operator, then we no longer have the correlation operator
Ua and the correlated subsystem picture (10a)–(10h). Nevertheless, in some cases, twin
Hermitians, defined by

H1ρ12 = H2ρ12, (16a)

have been found [15]. (Their physical meaning was analogous to that in the pure-state case.)
It was shown that (16a) implied

[Hs, ρs] = 0, s = 1, 2, (16b, c)

where ρs are again the reduced density operators. (Unlike in the case where ρ12 is a pure state,
in the mixed-state case the commutations (16b, c) are not sufficient for the existence of a twin
observable.)

Relations (16b, c), in turn, again imply reduction of Hs in every positive-eigenvalue
eigensubspace R

(
Q

j
s

)
of ρs, s = 1, 2, but now the dimensions of the corresponding,
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i.e., equal-j , eigensubspaces are, unlike in (10c, d), completely independent of each other
(but finite dimensional). In each of them, relations (15a, b) (with ‘and’ instead of ‘or’) hold
true, and define twin unitaries satisfying (2a) with ρ12 instead of |�〉12〈�|12.

Thus, in some cases, the concept of envariance can be extended to mixed states.

3. Quantum probability law from twin unitaries

The forthcoming argument is given in five stages; the first three stages are an attempt to
essentially reproduce Zurek’s argument [1, 7, 17, 18] in a different way by utilizing the group
of all pairs of twin unitaries (presented in subsection 2.4). This derivation is intended to be
more explicit.

Zurek’s ‘environment’, which, after the standard interaction with the system under
consideration, establishes special, measurement-like correlations with it, is explicitly treated as
any entangled bipartite pure state |�〉12, where subsystem 1 is the system under consideration,
and 2 is some opposite subsystem with an infinite dimensional state space H2. We shall try to
see to what extent and how the quantum probability law follows from the quantum correlations,
i.e., the entanglement in |�〉12.

The forth stage is new. It is meant to extend the argument to states |φ〉1 which are not
eigenvectors of the reduced density operator ρ1 ≡ tr2(|�〉12〈�|12). The fifth stage is also new.
It extends the argument to isolated (not correlated) systems.

Let |�〉12 be an arbitrary entangled bipartite state vector. We assume that subsystems 1
and 2 are not interacting. (They may have interacted in the past and thus have created the
entanglement. But it also may have been created in some other way, e.g., by an external field
as the spatial-spin entanglement in a Stern–Gerlach apparatus.)

We want to obtain the probability law in subsystem 1. By this we assume that there exist
probabilities, and we do not investigate why this is so; we only want to obtain their form.

On p 4, left column, in [7] (the archive copy), Zurek lists three ‘facts’, which he considers
basic to his approach.

‘Fact 1. Unitary transformations must act on the system to alter its state. (That is,
when the evolution operator does not operate on the Hilbert space HS of the system,
i.e., when it has a form · · · ⊗ 1S ⊗ · · · the state of S remains the same.)

Fact 2. The state of the system S is all that is needed (and all that is available) to
predict measurement outcomes, including their probabilities.

Fact 3. The state of a larger composite system that includes S as a subsystem is all
that is needed (and all that is available) to determine the state of the system S.’

Zurek adds ‘ . . . the above facts are interpretation-neutral and the states (e.g., ‘the
state of S’) they refer to need not be pure.’

I find Zurek’s ‘facts’ fully convincing, and I am going to build them into the present
Zurek-like approach. Mentioning them explicitly will, I hope, also facilitate a comparison
between Zurek’s original derivation and my first three stages below.

The first stipulation is as follows.
(a) Though the given pure state |�〉12 determines all properties in the composite system,

therefore also all those of subsystem 1, the latter must be determined actually by the subsystem
alone. This is, by (vague) definition, what is meant by local or subsystem properties.

(b) There exist local or subsystem probabilities of all elementary events |φ〉1〈φ|1, |φ〉1 ∈
H1. (As it has been stated in the introduction, we will write the event shortly as the state vector
that determines it.)
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Since |�〉12 ∈ (H1 ⊗ H2), subsystem 1 is somehow connected with the state space
H1, but it is not immediately clear precisely how. Namely, since we start out without the
probability rule, the reduced density operator ρ1 ≡ tr2(|�〉12〈�|12), though mathematically at
our disposal, is yet devoid of physical meaning. We need a precise definition of what is local
or what is the subsystem state. We will achieve this gradually, and thus ρ1 will be gradually
endowed with the standard physical meaning.

The second stipulation is that subsystem or local properties must not be changeable by
remote action, i.e., by applying a second-subsystem unitary U2 to |�〉12 or any unitary U23

applied to the opposite subsystem with an ancilla (subsystem 3).
If this were not so, then there would be no sense in calling the properties at issue

‘local’ and not ‘global’ in the composite state. We are dealing with a definition of local or
subsystem properties. By assumption (b) in the first stipulation, the probability law that we
are endeavouring to obtain should be local.

The most important part of the precise mathematical formulation of the second stipulation
is in terms of twin unitaries (cf (2a)).

Stage 1. No local unitary U1 that has a twin U2 must be able to change any local property. We
know from theorem 1 that such local unitaries U1 are all those that commute with ρ1, and no
others. In this way the mathematical entity ρ1 is already beginning to obtain some physical
relevance for local properties.

We know from the final theorem that we are dealing with U1 that are orthogonal sums
of arbitrary unitaries acting within the positive-eigenvalue eigensubspaces R

(
Q

j

1

)
of ρ1

(cf (13a)).
Let |φ〉1 and |φ〉′1 be any two distinct state vectors from one and the same positive-

eigenvalue eigensubspace R
(
Q

j

1

)
of ρ1. Evidently, there exists a unitary U

j

1 in this subspace
that maps |φ〉1 into |φ〉′1, and, adding to it orthogonally any other eigensubspace unitaries (cf
(13a)), one obtains a unitary U1 in H1 that has a twin, i.e., the action of which can be given
rise to from the remote second subsystem. (‘Remote’ here refers in a figurative way to lack of
interaction. Or, to use Zurek’s terms, 1 and 2 are assumed to be ‘dynamically decoupled’ and
‘causally disconnected’.) Thus, we conclude that the two first-subsystem states at issue must
have the same probability.

In other words, arguing ab contrario, if the probabilities of the two distinct states
|φ〉1, |φ〉′1 ∈ R

(
Q

j

1

)
were distinct, then, by remote action (by applying the twin unitary

U2 of the above unitary U1 to |�〉12), one could transform one of the states into the other,
which would locally mean changing the probability value without any local cause.

Putting our conclusion differently, all eigenvectors of ρ1 that correspond to one and
the same eigenvalue rj > 0 have one and the same probability in |�〉12. Let us denote by
p
(
Q

j

1

)
the probability of the, in general, composite event that is mathematically represented

by the eigenprojector Q
j

1 corresponding to the eigenvalue rj of ρ1 (cf (10c)), and let the
multiplicity of rj (the dimension of R(Q

j

1)) be dj . Then the probability of |φ〉1 in ρ1 is
p
(
Q

j

1

)
/dj . To see this, one takes a basis {|φk〉1 : k = 1, 2, . . . , dj } spanning R

(
Q

j

1

)
, or,

equivalently, Q
j

1 = ∑dj

k=1 |φk〉1〈φk|1, with, e.g., |φk=1〉1 ≡ |φ〉1. Further, one makes use of
the additivity rule of probability: probability of the sum of mutually exclusive (orthogonal)
events (projectors) equals the same sum of the probabilities of the event terms in it. Finally,
one takes into account the fact that all dj basis vectors have one and the same probability
in ρ1.

Actually, the σ -additivity rule of probability is the third stipulation. It requires that the
probability of every finite or infinite sum of exclusive events be equal to the same sum of the
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probabilities of the event terms. We could not proceed without it. (The need for infinite sums
will appear four passages below.)

In the special case, when ρ1 has only one positive eigenvalue of multiplicity d (the
dimension of the range of ρ1), the probability of |φ〉1 ∈ R(ρ1) is p(Q1)/d (where Q1 is the
range projector of ρ1.) To proceed, we need to evaluate p(Q1).

To this purpose, we make the fourth stipulation: every state vector |φ〉1 that belongs to the
null space of ρ1 (or, equivalently, when |φ〉1〈φ|1, acting on |�〉12, gives zero) has probability
zero. (The twin unitaries do not influence each other in the respective null spaces, cf (13a, b).
Hence, this assumption is independent of the second stipulation.)

Justification for the fourth stipulation lies in Zurek’s original framework. Namely, if the
opposite subsystem is the environment, which establishes measurement-like entanglement,
then the Schmidt states, e.g., the above eigen-sub-basis, obtain partners in a Schmidt
decomposition (cf (5)), and this leads to measurement. States from the null space do not
appear in this, and cannot give a positive measurement result.

One has 11 = Q1 +
∑

l |l〉1〈l|1, where {|l〉1 : ∀l} is a basis spanning the null space of
ρ1, which may be infinite dimensional. Then, p(Q1) = p(11) = 1 follows from the third
stipulation (σ -additivity) and the fourth one. Finally, in the above special case of only one
positive eigenvalue of ρ1, the probability of |φ〉1 ∈ R(ρ1) is 1/d, which equals the only
positive eigenvalue of ρ1 in this case.

Our next aim is to derive p
(
Q

j

1

)
in a more general case.

Stage 2. In this stage we confine ourselves to composite state vectors |�〉12 (i) that have
finite entanglement, i.e., the first-subsystem reduced density operator of which has a finite-
dimensional range, (ii) such that each eigenvalue rj of ρ1 is a rational number.

We rewrite the eigenvalues with an equal denominator: ∀j : rj = mj/M. Since∑
j dj rj = 1, one has

∑
j djmj = M (dj being the multiplicity of rj ).

Now we assume that |�〉12 has a special structure:
(i) The opposite subsystem 2 is bipartite in turn, hence we replace the notation 2 by (2+3),

and |�〉12 by |	〉123.

(ii) (a) We introduce a two-indices eigen-sub-basis of ρ1 spanning the closed range
R̄(ρ1) : {|j, kj 〉1 : kj = 1, 2, . . . , dj ; ∀j} so that the sub-basis is, as one says, adapted to
the spectral decomposition ρ1 = ∑

j rjQ
j

1 of the reduced density operator, i.e., ∀j : Q
j

1 =∑dj

kj =1 |j, kj 〉1〈j, kj |1.
(b) We assume that H2 is at least M dimensional, and we introduce a basis {|j, kj , lj 〉2 :

lj = 1, 2, . . . , mj ; kj = 1, 2, . . . , dj ; ∀j} spanning a subspace of H2.

(c) We assume that also H3 is at least M dimensional, and we introduce a basis
{|j, kj , lj 〉3 : lj = 1, 2, . . . , mj ; kj = 1, 2, . . . , dj ; ∀j} spanning a subspace of H3.

(d) Finally, we define via a canonical Schmidt decomposition 1 + (2 + 3) (cf (7a)):

|	〉123 ≡
∑

j

dj∑
kj =1

(mj/M)1/2


|j, kj 〉1 ⊗


 mj∑

lj =1

(1/mj )
1/2|j, kj , lj 〉2|j, kj , lj 〉3





 . (17a)

Equivalently,

|	〉123 ≡
∑

j

dj∑
kj =1

mj∑
lj =1

(1/M)1/2|j, kj 〉1|j, kj , lj 〉2|j, kj , lj 〉3. (17b)

Viewing (17b) as a state vector of a bipartite (1+2)+3 system, we see that it is a canonical
Schmidt decomposition (cf (7a)). Having in mind (7b), and utilizing the final conclusion of
stage one, we can state that the probability of each state vector |j, kj 〉1|j, kj , lj 〉2 is 1/M.
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On the other hand, we can view (17a) as a state vector of the bipartite system 1 + (2 + 3)

in the form of a canonical Schmidt decomposition. One can see that ∀j,
(
Q

j

1 ⊗ 12
)

and∑dj

kj =1

∑mj

lj =1 |j, kj 〉1〈j, kj |1 ⊗ |j, kj , lj 〉2〈j, kj , lj |2 act equally on |	〉123. On the other hand,
it is easily seen that the former projector can be written as a sum of the latter sum of projectors
and of an orthogonal projector that acts as zero on |	〉123, and therefore has zero probability
on account of stipulation four. Thus,

(
Q

j

1 ⊗ 12
)

and the above sum have equal probabilities,
which is

p
(
Q

j

1 ⊗ 12
) = djmj/M. (18)

As was concluded in stage 1, the probability of any state vector |φ〉1 in R
(
Q

j

1

)
is

p
(
Q

j

1

)/
dj . The projectors Q

j

1 and
(
Q

j

1 ⊗ 12
)

stand for the same event (viewed locally
and more globally respectively); hence they have the same probability in |	〉123. Thus,
p(|φ〉1) = mj/M = rj , i.e., it equals the corresponding eigenvalue of ρ1.

We see that also the eigenvalues, not just the eigensubspaces, i.e., the entire operator ρ1

is relevant for the local probability. At this stage we do not yet know if we are still lacking
some entity or entities. We will write X for the possible unknown.

How do we justify replacing |�〉12 by |	〉123? In the state space (H2 ⊗ H3) there is a
pair of orthonormal sub-bases of d = ∑

j dj vectors that appear in (17a). Evidently, there
exists a unitary operator U23 that maps the Schmidt-state partners |j, kj 〉2 of |j, kj 〉1 in |�〉12

tensorically multiplied with an initial state |φ0〉3 into the vectors:

∀kj ,∀j : U23 : |j, kj 〉2|φ0〉3 −→
mj∑

lj =1

(1/mj )
1/2|j, kj , lj 〉2|j, kj , lj 〉3. (19)

On account of the second stipulation, any such U23, which transforms by interaction an ancilla
(subsystem 3) in state |φ0〉3 and subsystem 2 as it is in |�〉12 into the (2 + 3)-subsystem state
as it is |	〉123, does not change any local property of subsystem 1. Hence, it does not change
the probabilities either.

Stage 3. We make the fifth stipulation: the probability formula that we are trying to derive
is continuous in ρ1, i.e., if ρ1 = limn→∞ ρn

1 , then p(E1, ρ1, X) = limn→∞ p
(
E1, ρ

n
1 , X

)
, for

every event (projector) E1. (We assume that X, if it exists, does not change in the convergence
process.)

Let ρ1 = ∑J
j=1 rjQ

j

1, J a natural number, be the spectral form of an arbitrary
density operator with finite-dimensional range. One can write ρ1 = limn→∞ ρn

1 , where
ρn

1 = ∑J
j=1 rn

j Q
j

1, with rj = limn→∞ rn
j , j = 1, 2, . . . , J, and all rn

j are rational numbers.

(Note that the eigenprojectors Q
j

1 are assumed to be the same all over the convergence.) Then
the required continuity gives for an eigenvector

∣∣rj0

〉
of ρ1 corresponding to the eigenvalue rj0 :

p
(∣∣rj0

〉
, ρ1, X

) = limn→∞ p
(∣∣rj0

〉
, ρn

1 , X
) = rj0 . This extends the conclusion of stage two to

all ρ1 with finite-dimensional ranges, and their eigenvectors.
Let ρ1 = ∑∞

j=1 rjQ
j

1 have an infinite-dimensional range. We define ρn
1 ≡∑n

j=1

(
rj

/(∑n
k=1 rk

))
Q

j

1. (Note that we are taking the same eigenprojectors Q
j

1.) Then ρ1 =
limn→∞ ρn

1 , and for any eigenvector |rj0〉 one has p(|rj0〉, ρ1, X) = limn→∞ p(|rj0〉, ρn
1 , X) =

limn→∞ rj0

/( ∑n
k=1 rk

) = rj0 . This extends the conclusion of the preceding stage to all reduced
density operators.

As a final remark about stage three, we point out that the continuity postulated is
meant with respect to the so-called strong operator topology in Hilbert space [19]. Thus,
if A = limn→∞ An in this topology (A and An any bound linear operators), then, and only
then, for every vector |ψ〉 one has A|ψ〉 = limn→∞ An|ψ〉. This, in turn, means, as well
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known, that limn→∞ ‖A|ψ〉 − An|ψ〉‖ = 0 (where the ‘distance’ in the Hilbert space is made
use of).

Stage 4. The result of the preceding stages can be put as follows: if ρ1|φ〉1 = r|φ〉1, then the
probability is

p(|φ〉1, ρ1) = r = 〈φ|1ρ1|φ〉1. (20)

(We have dropped X because we already know that, as far as eigenvectors of ρ1 are
concerned, nothing is missing.) Now we wonder what about state vectors |φ〉1 that are
not eigenvectors of ρ1. Entanglement in a composite state vector |�〉12 that implies ρ1 through
ρ1 ≡ tr2(|�〉12〈�|12) is of no further use. We must change |�〉12 and ρ1 in a suitable manner.

Our sixth stipulation consists of the assumption that the least invasive non-demolition
measurement, i.e., the so-called ideal measurement, of the observable

A1 ≡ |φ〉1〈φ|1 (21)

is performable in the state ρ1. (Earlier used synonyms for ‘non-demolition’ are ‘repeatable’,
‘predictive’ and ‘of the first kind’.) By this measurement one can disregard the fact that ρ1 is
the state of a subsystem of |�〉12 (as proved in appendix D).

As well known [20], in ideal measurement the Lüders change-of-state formula is
applicable, which in our case reads

ρ1 → ρ ′
1 ≡ (|φ〉1〈φ|1)ρ1(|φ〉1〈φ|1) + (|φ〉1〈φ|1)⊥ρ1(|φ〉1〈φ|1)⊥

= (〈φ|1ρ1|φ〉1)|φ〉1〈φ|1 + (|φ〉1〈φ|1)⊥ρ1(|φ〉1〈φ|1)⊥. (22)

Since ρ ′
1 describes both individual systems and ensembles, the very concept of

measurement requires that the statistical weights in the mixture (22), which is the final state
of the measurement interaction, be equal to the corresponding probabilities; in particular,

p(|φ〉1, ρ1) = 〈φ|1ρ1|φ〉1. (23)

Thus, (20) is valid also for states |φ〉1 that are not eigenstates of ρ1.
It should be, perhaps, noted that the Lüders change-of-state formula (22), which is

characteristic for ideal measurement, has been shown to be equivalent to minimal change of
state [21]. By this the closest state among states to which non-demolition measurement can
lead is taken using the distance in the metric space of Hilbert–Schmidt operators, to which
density operators belong. (From the mathematical point of view, however, this is not the
natural metric space for density operators, because also the more restricted ideal of trace-class
operators, of which the density operators also form a subset, is a metric space as every vector
space with a norm. The larger ideal of Hilbert–Schmidt operators is the completion of the
ideal of trace class operators in the Hilbert–Schmidt norm (cf appendix C)1.)

Stage 5. Finally, we have to find out what the probability law should be when ρ is not an
improper, but a proper mixture [22], i.e., when there are no correlations with another system.

Though these two kinds of mixtures are physically very different on the global level, it is
known that locally there is no difference. We could therefore just stipulate this fact and thus
extend the local probability law unchanged to proper mixtures. But there is an alternative that
is based on a weaker assumption.

We make the seventh stipulation assuming that the continuity assumption (the fifth
stipulation) is valid without the need to distinguish proper and improper mixtures locally,
i.e., in subsystem 1.

We take first an isolated pure state |ψ〉.
1 I owe this insight to an unknown board member, who was kindly adjudicating the references for this paper.
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We start with an infinite sequence of correlated bipartite state vectors {|�12〉n : n =
1, 2, . . . ,∞} such that, as far as the reduced density operator is concerned, one has

∀n : ρn
1 = (1 − 1/n)|ψ〉1〈ψ |1 + (|ψ〉1〈ψ |1)⊥ρn

1 (|ψ〉1〈ψ |1)⊥, (24)

where |ψ〉1 actually equals |ψ〉. (It is well known that for every density operator ρ1 there
exists a state vector |�〉12 such that ρ1 = tr2(|�〉12〈�|12). This claim is easily proved using
the spectral form (7b) of ρ1 and the canonical Schmidt decomposition (7a).) We now write
index 1 because we now do have correlations with subsystem 2.

Obviously

|ψ〉1〈ψ |1 = lim
n→∞ ρn

1 . (25)

According to our fifth stipulation, the probability formula is continuous in the density
operator. Hence,

∀|φ〉 : p(|φ〉, |ψ〉〈ψ |) = lim
n→∞ p

(|φ〉1, ρ
n
1

) = lim
n→∞〈φ|1ρn

1 |φ〉1 = 〈φ|1 lim
n→∞ ρn

1 |φ〉1.

This finally gives

∀|φ〉 : p(|φ〉, |ψ〉〈ψ |) = 〈φ|(|ψ〉〈ψ |)|φ〉 = |〈φ||ψ〉|2. (26)

In this way, the same probability formula is extended to isolated pure states.
If ρ is an isolated mixed state, i.e., a proper mixture, one can take any of its (infinitely

many) decompositions into pure states, say,

ρ =
∑

k

wk|ψk〉〈ψk|,

where wk are the statistical weights (∀k : wk > 0;∑
k wk = 1). Then

p(|φ〉, ρ) =
∑

k

wk〈φ|(|ψk〉〈ψk|)|φ〉.

This finally gives

p(|φ〉, ρ) = 〈φ|ρ|φ〉, (27)

extending the same probability formula to mixed isolated states. (It is obvious that the
choice of the above decomposition into pure states is immaterial. One can take the spectral
decomposition, e.g.)

The form 〈φ|ρ|φ〉 of the probability law obtained, following Zurek, in the present version is
equivalent to the (much more generally looking) trace rule on account of σ -additivity. Namely,
if we take any event E and write it as a sum of orthogonal ray projectors E = ∑

i=1 |i〉〈i|,
additivity or σ -additivity (in the case of a finite or an infinite sum respectively) enables us to
transform the present form into the trace rule:

p(E, ρ) =
∑
i=1

〈i|ρ|i〉 =
∑
i=1

tr(ρ|i〉〈i|) = tr

(
ρ

(∑
i=1

|i〉〈i|
))

= tr(ρE). (28)

On the other hand, it is obvious that the trace rule reduces to 〈φ|ρ|φ〉 in the case of elementary
events (ray projectors) E ≡ |φ〉〈φ|.

4. Final remarks

In the long derivation of the preceding section some points require additional comments. They
are displaced into this final section in an attempt to keep the derivation with as few deviations
as possible.
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4.1. Non-contextuality of probability in terms of events

This remark should shed light on an aspect of probabilities of events that is usually, and also
in the preceding section, taken for granted.

(a) The event non-contextuality. On account of the implication relation in the structure of
all events (the projector E implies the projector F, i.e., E � F if and only if EF = E), every
composite event can occur as a consequence of the occurrence of different elementary events
that imply it. Nevertheless, the probability does not depend on this.

As a matter of fact, the probabilities of the composite events are in section 3 of this
paper, following Zurek, defined in terms of mutually exclusive elementary events (orthogonal
ray-projectors, each defined by a state vector) using σ -additivity. This implies event non-
contextuality of probability.

(b) Non-contextuality with respect to observables. A given elementary (or composite)
event can, in general, be the eigenevent (eigenprojector) of different observables. (This,
essentially, amounts to the so-called eigenvalue–eigenstate link.) Correspondingly, the event
can occur in measurement of different observables. The probability of the event does not
depend on this. This non-contextuality has not been utilized in the present quantum logical
approach, in which, by definition, observables more general than events (projectors) are
avoided.

4.2. How much probability has been put into the derivation?

In their concluding remarks Schlosshauer and Fine [2] say:

‘ . . . a fundamental statement about any probabilistic theory: we cannot derive
probabilities from a theory that does not already contain some probabilistic concept;
at some stage, we need to ‘put probabilities in to get probabilities out’.

We have ‘put in’ seven stipulations. More will be said on the ‘price’ that has been ‘paid’
for the probability law in the next subsection.

4.3. Zurek-like derivation and Gleason’s theorem

In an effort to make Zurek’s argument more transparent, his ‘small natural’ and some tacit
assumptions have been avoided as much as possible. The most disquieting consequence was
raising σ -additivity to the status of a stipulation. This was no different than in Gleason’s
well-known theorem [8], which goes as follows.

One assumes that one has a map associating a number p from the doubly closed interval
[0, 1] with every subspace, or, equivalently, with every projector E (projecting onto a subspace)
observing σ -additivity, i.e.

p

(∑
i

Ei

)
=

∑
i

p(Ei) (29a)

for every orthogonal decomposition (finite or infinite) of every projector. Then, for every such
map, there exists a unique density operator ρ such that

p(E, ρ) = tr(Eρ) (29b)

for every projector (the trace rule). Thus, the set of all density operators and that of all quantum
probabilities stand in a natural and simple one-to-one relation.

In spite of the generality and elegance of Gleason’s theorem, any Zurek-like derivation
is very valuable. Perhaps a famous dictum of Wigner can help to make this clear. When
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faced with the challenge of computer simulations to replace analytical solutions of intricate
equations of important physical meaning, Wigner has allegedly said ‘I am glad that your
computer understands the solutions; but I also would like to understand them.’

Schlosshauer and Fine say (in the introduction to their paper):

‘ . . . Gleason’s theorem is usually considered as giving rather little physical insight
into the emergence of quantum probabilities and the Born rule.’

Gleason gives the complete answer at once in the form of the trace rule. One can then
derive from it the other six postulates of the present version and more. To use Wigner’s words,
the mathematics in the proof of Gleason’s theorem ‘understands’ the uniqueness and the other
wonders of the quantum probability law, but we do not.

Now, the extra 6 stipulations in the present version (besides σ -additivity), though logically
unnecessary in view of Gleason’s theorem, nevertheless, thanks to Zurek’s ingenuity, help to
unfold before our eyes the simplicity and full generality of the quantum probability law.

4.4. The role of entanglement

In this remark a critical view is taken of the role of entanglement in the present derivation.
Entanglement enters through the sole entanglement entity of the approach—the correlation

operator Ua (see the correlated subsystem picture in subsection 2.3.). In terms of this entity
a complete answer was obtained to the questions which unitaries have a twin, and which
opposite-subsystem unitary is the (unique) twin.

However, in section 3, in unfolding the present version, the correlation operator (and
hence entanglement) was not made use of at all. All that was utilized was the general form of
a first-subsystem unitary that has a twin: U1 = ∑

j U
j

1 Q
j

1 + U ′
1Q

⊥
1 , where 11 = ∑

j Q
j

1 + Q⊥
1

is the eigenresolution of the unity with respect to (distinct eigenvalues) of the reduced density
operator ρ1(≡ tr2(|�〉12〈�|12)), and ∀j : U

j

1 is an arbitrary unitary in the eigensubspace
R

(
Q

j

1

)
corresponding to the positive eigenvalue rj of ρ1 (cf subsection 2.4.).

These unitaries (Zurek’s envariance unitaries) are utilized to establish what are local
or first-subsystem properties, in particular, local probabilities. It immediately follows that
any two distinct eigenvectors corresponding to the same eigenvalue of ρ1 determine equal-
probability events (cf Stage one in section 3). Thus, envariance is made use of in the first and
most important step of Zurek’s argument without ‘putting in probability’ (cf subsection 4.2).

Nevertheless, twin unitaries (envariance) is due to entanglement, and Zureks argument
is based on the latter. Entanglement is, as well known, the basic stuff of which quantum
communication and quantum computation are made of. No wonder that entanglement is
increasingly considered to be a fundamental physical entity. As an illustration for this, one
may mention that preservation of entanglement has been proposed as an equivalent second
law of thermodynamics for composite systems (cf [23] and the references therein).

4.5. σ -additivity

It was argued in the preceding section that the presented derivation cannot work without the
assumption of σ -additivity. Zurek, on the other hand, has a somewhat different claim: on
pp 18 and 19 [7] he says:

‘To demonstrate Lemma 5 (a key step in his endeavour, FH) we need one more
property—the fact that when a certain event U(p(U) = 1) can be decomposed into
two mutually exclusive events, U = k ∨ k⊥, their probability must add up to unity:

p(U) = p(k ∨ k⊥) = p(k) + p(k⊥) = 1.
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This assumption introduces (in a very limited setting) additivity. It is equivalent to
the statement that ‘something will certainly happen’.

To get an idea how full σ -additivity differs from Zureks ‘very limited’ assumption, we
put the former in the form of a ‘staircase’ of gradually strengthened partial assumptions.

The starting point is the fact that if any event E occurs, the opposite event E⊥(≡ (1 −E))

does not occur (in suitable measurement, of course).
(1) It is plausible to assume that E + E⊥ = 1 has p(E) + p(E⊥) = 1 as its consequence

in any quantum state.
(2) If E + F = G (all being events, i.e., projectors, and EF = 0), then, in view of the fact

that, e.g., F is the opposite event of E in G, i.e., F = E⊥G, and in view of assumption (1), it
is plausible to assume that E + F = G implies p(E) + p(F) = p(G) in any quantum state.
Obviously, assumption (2) is a strengthening of assumption (1).

Lemma. Assumption (2) implies additivity for every finite orthogonal sum of events:∑
i Ei = G ⇒ ∑

i p(Ei) = p(G) in any quantum state.

Proof. If the lemma is valid for n terms, then

p

(
(n+1)∑
i=1

Ei

)
= p

((
n∑

i=1

Ei

)
+ E(n+1)

)
= p

(
n∑

i=1

Ei

)
+ p(E(n+1)) =

(n+1)∑
i=1

p(Ei),

i.e., it is valid also for (n + 1) terms. By assumption, it is valid for two terms. By total
induction, it is then valid for every finite sum. �

(3) If one has the projector relation G = limn→∞ Fn and the projector sequence
{Fn : n = 1, 2, . . . ,∞} is non-descending (∀n : F(n+1) � Fn ⇔ F(n+1)Fn = Fn), then
the assumption of continuity in the probability p(G) = limn→∞ p(Fn) is plausible (otherwise
one could have jumps in probability and no event responsible for it). Assuming the validity
of assumption (2), it implies

p

( ∞∑
i=1

Ei

)
≡ p

(
lim

n→∞

n∑
i=1

Ei

)
= lim

n→∞

n∑
i=1

p(Ei) ≡
∞∑
i=1

p(Ei),

i.e., σ -additivity ensues.
If one wants to estimate how ‘steep’ each of these ‘stairs’ is, one is on intuitive ground

burdened with feeling and arbitrariness. Assumption (1) seems to be the largest ‘step’ (with
respect to the stated fact that is its premise). Once (1) is given, assumption (2) (equivalent
to additivity of probability) seems very natural, hence less ‘steep’. The final assumption (3)
seems even more natural, and hence least ‘steep’.

Let us revisit the Zurek-like argument with respect to σ -additivity. Let |�〉12 be infinitely
entangled, or, equivalently, let ρ1 ≡ tr2(|�〉12〈�|12) have an infinite-dimensional range.
Further, let {|i〉1 : i = 1, 2, . . . ,∞} be a set of eigenvectors of ρ1 corresponding to different
eigenvalues, but let they not span the whole range R̄(ρ1). Without the validity of σ -additivity
we cannot infer the probability p(E1, ρ1), where E1 ≡ ∑∞

i=1 |i〉1〈i|1. Thus, if one wants the
general form of the probability law, and in the present version nothing less is wanted, then
one must make the above assumption (2) and the continuity assumption in (3) (assumptions
of which the σ -additivity concept consists).

4.6. Why unitary operators?

Both envariance and its other face, unitary twins, are expressed in terms of unitary operators.
One can raise the question in the title of the subsection.
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The answer lies in the notion of distant influence and in the notion of Zurek’s ‘Fact 1’ (see
the sixth paragraph in section 3). One assumes that the nearby subsystem 1 is dynamically
decoupled from another subsystem 2, but not statistically. Entanglement is assumed to exist
between the two subsystems. On account of the quantum correlations that are established, one
can manipulate subsystem 2 in order to make changes in subsystem 1 (without interaction with
it). By definition, local are those properties of the nearby subsystem that cannot be changed
by the described distant influence. Probabilities of events on subsystem 1 were stipulated to
be local.

One is thinking in terms of so-called bare quantum mechanics, i.e., quantum mechanics
without collapse. Then all conceivable manipulations of the distant subsystem are unitary
evolutions (suitable interactions of suitably chosen subsystems—all without any interaction
with subsystem 1). As Zurek puts it in his ‘fact 1’: ‘Unitary transformations must act on the
system to alter its state.’ (This goes for the distant subsystem which should exert the distant
influence.)

Unitary evolution preserves the total probability of events. The suspicion has been voiced
that restriction to unitary operators might just be a case of ‘putting in probability in order to
get out probability’2. Even if this is so, it appears to be even milder than Zurek’s ‘putting in’
probability-one assumptions (cf last passage in subsection B.1 in [7]).

One may try to argue that the unitarity of the evolution operator (of the dynamical law)
does not contain any probability assumption. Namely, one may start with the Schrödinger
equation, of which the unitary evolution operator is the integrated form (from instantaneous
tendency of change in a finite interval). At first glance, the Schrödinger equation has nothing
to do with probabilities. But this is not quite so. The dynamical law, instantaneous or for
a finite interval, gives the change of the quantum state, which is, in turn, equivalent to the
totality of probability predictions (cf Gleason’s theorem in subsection 4.3.).

Perhaps the ‘fundamental statement’ quoted in subsection 4.2. is true, and one should not
expect to derive probabilities exclusively from notions completely different from them.
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Appendix A

We prove now that the correlation operator Ua is independent of the choice of the eigen-sub-
basis of ρ1 (cf (7b)) that spans R̄(ρ1) in which the strong Schmidt decomposition of |�〉12

(cf (9)) is written.

2 The question in the title of the subsection was raised by Schlosshauer (in private communication). He voiced the
suspicion that restriction to unitary operators might be a way of ‘putting in probabilities to get out probabilities’.
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Let {|j, kj 〉1 : ∀kj ,∀j} and {|j, lj 〉1 : ∀lj ,∀j} be two arbitrary eigen-sub-bases of ρ1

spanning R̄(ρ1). The vectors are written with two indices, j denoting the eigensubspace
R

(
Q

j

1

)
to which the vector belongs, and the other index kj (lj ) enumerates the vectors within

the subspace.
The proof goes as follows. Let

∀j : |j, kj 〉1 =
∑
lj

U
(j)

kj ,lj
|j, lj 〉1,

where
(
U

(j)

kj ,lj

)
are unitary sub-matrices. Then, keeping Ua one and the same, we can start out

with the strong Schmidt decomposition in the kj -eigen-sub-basis, and after a few simple steps
(utilizing the antilinearity of Ua and the unitarity of the transition sub-matrices), we end up
with the strong Schmidt decomposition (of the same |�〉12) in the lj -eigen-sub-basis:

|�〉12 =
∑

j

∑
kj

r
1/2
j |j, kj 〉1(Ua|j, kj 〉1)2

=
∑

j

∑
kj


r

1/2
j


∑

lj

U
(j)

kj ,lj
|j, lj 〉1


 ⊗


Ua


∑

l′j

U
(j)

kj ,l
′
j
|j, l′j 〉1







2




=
∑

j

∑
lj

∑
l′j


r

1/2
j


∑

kj

U
(j)

kj ,lj
U

(j)∗
kj ,l

′
j


 |j, lj 〉1 ⊗ (Ua|j, l′j 〉1)2




=
∑

j

∑
lj

∑
l′j

{
r

1/2
j δlj ,l

′
j
|j, lj 〉1 ⊗ (Ua|j, l′j 〉1)2

}

=
∑

j

∑
lj

r
1/2
j |j, lj 〉1(Ua|j, lj 〉1)2.

Appendix B

We elaborate now the group of pairs of unitary twins.
Let (U ′

1, U
′
2) and (U1, U2) be two pairs of twin unitaries for a given bipartite state vector

|�〉12, i.e., let U ′
1|�〉12 = U ′

2|�〉12, and U1|�〉12 = U2|�〉12, be valid. Then, applying U2

to both sides of the former relation, exchanging the rhs and the lhs, and utilizing the latter
relation, one has

U2U
′
2|�〉12 = U2U

′
1|�〉12 = U ′

1U2|�〉12 = U ′
1U1|�〉12.

Hence, (U ′
1U1, U2U

′
2) are twin unitaries, and one can define a composition law as

(U ′
1, U

′
2) × (U1, U2) ≡ (U ′

1U1, U2U
′
2). (Note the inverse order in the second-subsystem

operators.) Naturally, the trivial twin unitaries (11, 12) are the unit element. The inverse
of (U1, U2) is

(
U−1

1 , U−1
2

)
(cf the proposition in subsection 2.).

Appendix C

Bounded linear operators A in a complex separable Hilbert space for which ‖A‖1 ≡
tr((A†A)1/2) < ∞ (A† being the adjoint of A) are trace-class ones. The set of all trace-
class operators is an ideal (and hence a vector space) with a norm. It implies a distance
d1(A,A′) ≡ ‖A − A′‖1.

Those linear operators A are Hilbert–Schmidt ones for which tr(A†A) < ∞. The scalar
product in the Hilbert space HHS of all linear Hilbert–Schmidt operators is (A,B) ≡ tr(A†B)
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(cf the definition after theorem VI.21 and problem VI.48(a) in [19]). The scalar product
implies the norm ‖A‖2 ≡ tr(A†A), and this in turn implies a distance d2(A,A′) ≡ ‖A−A′‖2.

One has always ‖A‖2 � ‖A‖1, and hence d2(A,A′) � d1(A,A′).

Appendix D

We assume that ideal measurement of the observable (|φ〉1〈φ|1 ⊗ I2) (I2 being the identity
operator in the state space of the second subsystem) in the state |�〉12 is performed, and we
are interested in the change of the state of subsystem 1.

Then ρ1(≡ tr2(|�〉12〈�|12)) goes over into the state

tr2((|φ〉1〈φ|1 ⊗ I2)(|�〉12〈�|12)(|φ〉1〈φ|1 ⊗ I2)

+ (|φ〉1〈φ|1 ⊗ I2)
⊥(|�〉12〈�|12)(|φ〉1〈φ|1 ⊗ I2)

⊥)

= |φ〉1〈φ|1ρ1|φ〉1〈φ|1 + (|φ〉1〈φ|1)⊥ρ1(|φ〉1〈φ|1)⊥.

This justifies disregarding the entanglement and the second subsystem in |�〉12.
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